Coastal Waveform Retracking for Jason-2 Altimeter Data Based on Along-Track Echograms around the Tsushima Islands in Japan

نویسندگان

  • Xi-feng Wang
  • Kaoru Ichikawa
چکیده

Although the Brown mathematical model is the standard model for waveform retracking over open oceans, due to heterogeneous surface reflections within altimeter footprints, coastal waveforms usually deviate from open ocean waveform shapes and thus cannot be directly interpreted by the Brown model. Generally, the two primary sources of heterogeneous surface reflections are land surfaces and bright targets such as calm surface water. The former reduces echo power, while the latter often produces particularly strong echoes. In previous studies, sub-waveform retrackers, which use waveform samples collected from around leading edges in order to avoid trailing edge noise, have been recommended for coastal waveform retracking. In the present study, the peaky-type noise caused by fixed-point bright targets is explicitly detected and masked using the parabolic signature in the sequential along-track waveforms (or, azimuth-range echograms). Moreover, the power deficit of waveform trailing edges caused by weak land reflections is compensated for by estimating the ratio of sea surface area within each annular footprint in order to produce pseudo-homogeneous reflected waveforms suitable for the Brown model. Using this method, altimeter waveforms measured over the Tsushima Islands in Japan by the Ocean Surface Topography Mission (OSTM)/Jason-2 satellite are retracked. Our results show that both the correlation coefficient and root mean square difference between the derived sea surface height anomalies and tide gauge records retain similar values at the open ocean (0.9 and 20 cm) level, even in areas approaching 3 km from coastlines, which is considerably improved from the 10 km correlation coefficient limit of the conventional MLE4 retracker and the 7 km sub-waveform ALES retracker limit. These values, however, depend on the topography of the study areas because the approach distance limit increases (decreases) in areas with complicated (straight) coastlines.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved Determination of Sea Surface Heights Close to the Australian Coast from ERS-2 Satellite Radar Altimetry

The homogeneous and repeated data coverage over coastal regions from satellite radar altimetry is one important data source for oceanographic and geodetic applications. However, the sea surface heights (SSH) extracted from the altimeter data are often in error close to the coast, due in part to the complex nature of echoes returned from rapidly varying coastal topographic surfaces (both land an...

متن کامل

CAWRES: A Waveform Retracking Fuzzy Expert System for Optimizing Coastal Sea Levels from Jason-1 and Jason-2 Satellite Altimetry Data

This paper presents the Coastal Altimetry Waveform Retracking Expert System (CAWRES), a novel method to optimise the Jason satellite altimetric sea levels from multiple retracking solutions. CAWRES’ aim is to achieve the highest possible accuracy of coastal sea levels, thus bringing measurement of radar altimetry data closer to the coast. The principles of CAWRES are twofold. The first is to re...

متن کامل

Retracking Jason-1 Altimeter Waveforms for Marine Gravity Recovery

In order to construct improved maps of marine gravity anomalies, we have developed and tested retracking methods for determining sea surface slopes from radar altimeter return waveforms collected by the Jason-1 mission. The accuracy of marine gravity models derived from satellite altimetry depends mainly on two factors: first, the density of ground tracks covered by the mission, and second, the...

متن کامل

Improving Jason-2 Sea Surface Heights within 10 km Offshore by Retracking Decontaminated Waveforms

It is widely believed that altimetry-derived sea surface heights (SSHs) in coastal zones are seriously degraded due to land contamination in altimeter waveforms from non-marine surfaces or due to inhomogeneous sea state conditions. Spurious peaks superimposed in radar waveforms adversely impact waveform retracking and hence require tailored algorithms to mitigate this problem. Here, we present ...

متن کامل

Retracking CryoSat-2, Envisat and Jason-1 radar altimetry waveforms for improved gravity field recovery

S U M M A R Y Improving the accuracy of the marine gravity field requires both improved altimeter range precision and dense track coverage. After a hiatus of more than 15 yr, a wealth of suitable data is now available from the CryoSat-2, Envisat and Jason-1 satellites. The range precision of these data is significantly improved with respect to the conventional techniques used in operational oce...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2017